Analog design migration is a key enabler of innovation in the semiconductor market. It’s no longer just an engineering consideration however, it’s a strategic imperative for any company looking to bring new solutions to market and maintain a competitive edge. More recently, this approach has become even more critical as geopolitical factors introduce supply chain uncertainties, making robust and adaptable design migration strategies essential.
With the industry’s push toward smaller nodes for better power, performance, area (PPA), and cost, the need for an effective migration process is crucial to enhance productivity, manage node complexity, satisfy evolving design rules, and maximize the return on original IP designs.
The critical role of process technology analysis
For design engineers considering migrating an existing analog IP to a new node, a clear understanding of process technology analysis is crucial. Device performance, technology characteristics, functional requirements, and design methodology are integral components that engineers must consider. Precision and strategy are critical to successfully navigating the complexities involved.
Traditionally this analysis would be a labor-intensive manual process, often involving scripts and spanning several months. The resulting resource-heavy analyses and prolonged timeframes frequently causing significant delays to critical business decisions. Given the increasing complexity in technology and market demands, this approach is quickly becoming unsustainable.
Streamlining Migration with AMALIA Technology Analyzer
With Thalia’s AMALIA Technology Analyzer (TA) software however, it is possible to move from away from manual, time-consuming processes, to rapid, automated analysis. AMALIA TA automates the evaluation of device electrical characteristics, providing the essential data businesses need to make quick, informed decisions about the most suitable technology nodes and devices for their projects.
AMALIA TA suggests optimal process nodes and devices, speeds up design porting feasibility, and generates detailed reports that drive sound, data-driven decisions and helps businesses mitigate risks. The turnaround time for analysis with AMALIA TA can be as short as 2 to 4 weeks, a significant improvement on the unpredictably long periods typically associated with manual analysis.
The efficiency of AMALIA TA is rooted in its key features which include a user-friendly GUI, quick device test case setup, and thorough device characteristic extraction using industry-standard simulators like Cadence Spectre and Siemens AFS. It provides detailed reports and color-coded tables that clearly outline parameter differences, supporting the decision-making process. It’s also equipped to run rigorous corners and Monte Carlo analysis, culminating in intelligent reporting on device characteristics and a comprehensive device mapping table.
It does this using a streamlined process with clearly defined steps:
- Define: Identify the source and target PDKs, devices, and schematics.
- Run Wizard: Auto-generate model sets and test cases, with the option for manual adjustments.
- Review & Run Analysis: Examine and tailor model sets and test cases to fit precise needs.
- Final Output: Receive a detailed report on device electrical characteristics and a device mapping table, empowering engineers with actionable insights.
Tools like AMALIA TA are revolutionizing the analog design migration process, transforming it into a manageable, precise, and time-efficient endeavor. For design engineers worldwide, AMALIA TA not only keeps pace with technological evolution but ensures leadership in innovation and market responsiveness.